Impulse Dynamics has successfully conducted numerous clinical studies, including several randomized controlled trials to evaluate the safety and efficacy of CCM® therapy as delivered by Optimizer® devices. The results have been published in over 80 articles appearing in (several) leading medical journals. The publications listed here represent much of the evidence amassed in these clinical trials.

Optimizer devices are currently available in the United States, Europe, China, Brazil, India and more than 40 other countries around the world. To date, more than 4,500 patients have received the benefits of CCM® therapy worldwide. Meanwhile, ongoing investigations are planned, and the results will be published here when available.

Clinical Trials

November 2021 Fastner et al: “Cardiac Contractility Modulation in Patients with Ischemic versus Non-ischemic Cardiomyopathy: Results from the MAINTAINED Observational Study”

Background: Cardiac contractility modulation (CCM) is an FDA-approved device-based therapy for patients with systolic heart failure and normal QRS width who are symptomatic despite optimal drug therapy. The purpose of this study was to compare the long-term therapeutic effects of CCM therapy in patients with ischemic (ICM) versus non-ischemic cardiomyopathy (NICM).

Methods: Changes in NYHA class, KDIGO CKD stage, left ventricular ejection fraction (LVEF), tricuspid annular plane systolic excursion (TAPSE), and NT-proBNP levels were compared as functional parameters. Moreover, observed mortality rates at 1 and 3 years were compared to those predicted by the MAGGIC heart failure risk score, and observed mortality rates were compared between groups for the entire follow-up period.

Results: One hundred and seventy-four consecutive patients with chronic heart failure and CCM device implantation between 2002 and 2019 were included in this retrospective analysis. LVEF was significantly higher in NICM patients after 3 years of CCM therapy (35 ± 9 vs. 30 ± 9%; p = 0.0211), and after 5 years, also TAPSE of NICM patients was significantly higher (21 ± 5 vs. 18 ± 5%; p = 0.0437). There were no differences in other effectiveness parameters. Over the entire follow-up period, 35% of all patients died (p = 0.81); only in ICM patients, mortality was lower than predicted at 3 years (35 vs. 43%, p = 0.0395).

Conclusions: Regarding improvement of biventricular systolic function, patients with NICM appear to benefit particularly from CCM therapy.


April 2021 – Kuschyk et al: " Long-term clinical experience with cardiac contractility modulation therapy delivered by the Optimizer Smart system" European Journal of Heart Failure


Aims: We assessed long-term effects of cardiac contractility modulation delivered by the Optimizer Smart system on quality of life, left ventricular ejection fraction (LVEF), mortality and heart failure and cardiovascular hospitalizations.

Methods and Results: CCM-REG is a prospective registry study including 503 patients from 51 European centres. Effects were evaluated in three terciles of LVEF (≤25%, 26–34% and ≥35%) and in patients with atrial fibrillation (AF) and normal sinus rhythm (NSR). Hospitalization rates were compared using a chi-square test. Changes in functional parameters of New York Heart Association (NYHA) class, Minnesota Living with Heart Failure Questionnaire (MLWHFQ) and LVEF were assessed with Wilcoxon signed-rank test, and event-free survival by Kaplan–Meier analysis. For the entire cohort and each subgroup, NYHA class and MLWHFQ improved at 6, 12, 18 and 24 months (P <0.0001). At 24 months, NYHA class, MLWHFQ and LVEF showed an average improvement of 0.6±0.7, 10±21 and 5.6±8.4%, respectively (all P <0.001). LVEF improved in the entire cohort and in the LVEF ≤25% subgroup with AF and NSR. In the overall cohort, heart failure hospitalizations decreased from 0.74 [95% confidence interval (CI) 0.66–0.82] prior to enrolment to 0.25 (95% CI 0.21–0.28) events per patient-year during 2-year follow-up (P <0.0001). Cardiovascular hospitalizations decreased from 1.04 (95% CI 0.95–1.13) events per patient-year prior to enrolment to 0.39 (95% CI 0.35–0.44) events per patient-year during 2-year follow-up (P <0.0001). Similar reductions of hospitalization rates were observed in the LVEF, AF and NSR subgroups. Estimated survival was significantly better than predicted by MAGGIC at 1 and 3 years in the entire cohort and in the LVEF 26–34% and ≥35% subgroups.

Conclusions: Cardiac contractility modulation therapy improved functional status, quality of life, LVEF and, compared to patients’ prior history, reduced heart failure hospitalization rates. Survival at 1 and 3 years was significantly better than predicted by the MAGGIC risk score.


April 2020 – Weign et al: “Safety, Performance, and Efficacy of Cardiac Contractility Modulation Delivered by the 2-Lead Optimizer Smart System - The FIX-HF-5C2 Study, Circulation Heart Failure


Aims: Prior studies of cardiac contractility modulation (CCM) employed a 3-lead Optimizer system. A new 2-lead system eliminated the need for an atrial lead. This study tested the safety and effectiveness of this 2-lead system compared with the 3-lead system.

Methods: Patients with New York Heart Association III/IVa symptoms despite medical therapy, left ventricular ejection fraction 25% to 45%, and not eligible for cardiac resynchronization therapy could participate. All subjects received an Optimizer 2-lead implant. The primary end point was the estimated difference in the change of peak VO2 from baseline to 24 weeks between FIX-HF-5C2 (2-lead system) subjects relative to control subjects from the prior FIX-HF-5C (3-lead system) study. Changes in New York Heart Association were a secondary end point. The primary safety end point was a comparison of device-related adverse events between FIX-HF-5C2 and FIX-HF-5C subjects.

Results: Sixty subjects, 88% male, 66±9 years old with left ventricular ejection fraction 34±6% were included. Baseline characteristics were similar between FIX-HF-5C and FIX-HF-5C2 subjects except that 15% of FIX-HF-5C2 subjects had permanent atrial fibrillation versus 0% in FIX-HF-5C. CCM delivery did not differ significantly between 2- and 3-lead systems (19 892±3472 versus 19 583±4998 CCM signals/day, CI of difference [−1228 to 1847]). The change of peak VO2 from baseline to 24 weeks was 1.72 (95% Bayesian credible interval, 1.02–2.42) mL/kg per minute greater in the 2-lead device group versus controls. 83.1% of 2-lead subjects compared with 42.7% of controls experienced ≥1 class New York Heart Association improvement (P<0.001). There were decreased Optimizer-related adverse events with the 2-lead system compared with the 3-lead system (0% versus 8%; P=0.03).

Conclusions: The 2-lead system effectively delivers comparable amount of CCM signals (including in subjects with atrial fibrillation) as the 3-lead system, is equally safe and improves peak VO2 and New York Heart Association. Device-related adverse effects are less with the 2-lead system.


January 2019 – Anker et al: "Cardiac contractility modulation improves long-term survival and hospitalizations in heart failure with reduced ejection fraction" European Journal of Heart Failure


Aims: Cardiac contractility modulation (CCM) improves symptoms and exercise tolerance and reduces heart failure (HF) hospitalizations over 6-month follow-up in patients with New York Heart Association (NYHA) class III or IV symptoms, QRS <130 ms and 25%≤left ventricular ejection fraction (LVEF)≤45% (FIX-HF-5C study). The current prospective registry study (CCM-REG) aimed to assess the longer-term impact of CCM on hospitalizations and mortality in real-world experience in this same population.

Methods and Results: A total of 140 patients with 25%≤LVEF≤45% receiving CCM therapy (CCM-REG25-45) for clinical indications were included. Cardiovascular and HF hospitalizations, Minnesota Living with Heart Failure Questionnaire (MLHFQ) and NYHA class were assessed over 2 years. Mortality was tracked through 3 years and compared with predictions by the Seattle Heart Failure Model (SHFM). A separate analysis was performed on patients with 35%≤LVEF≤45% (CCM-REG35-45) and 25%≤LVEF<35% (CCM-REG25-34). Hospitalizations decreased by 75% (from 1.2/patient-year the year before, to 0.35/patient-year during the 2 years following CCM, P <0.0001) in CCM-REG25-45 and by a similar amount in CCM-REG35-45 (P <0.0001) and CCM-REG25-34. MLHFQ and NYHA class improved in all three cohorts, with progressive improvements over time (P <0.002). Three-year survival in CCM-REG25-45 (82.8%) and CCM-REG24-34 (79.4%) were similar to those predicted by SHFM (76.7%, P =0.16; 78.0%, P =0.81, respectively) and was better than predicted in CCM-REG35-45 (88.0% vs. 74.7%, P =0.046).

Conclusion: In real-world experience, CCM produces results similar to those of previous studies in subjects with 25%≤LVEF≤45% and QRS <130 ms; cardiovascular and HF hospitalizations are reduced and MLHFQ and NYHA class are improved. Overall mortality was comparable to that predicted by the SHFM but was lower than predicted in patients with 35%≤LVEF≤45%

Download Email

May 2018 - Abraham et al, "A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation." JACC HF


Objectives: The authors sought to confirm a subgroup analysis of the prior FIX-HF-5 (Evaluate Safety and Efficacy of the OPTIMIZER System in Subjects With Moderate-to-Severe Heart Failure) study showing that cardiac contractility modulation (CCM) improved exercise tolerance (ET) and quality of life in patients with ejection fractions between 25% and 45%.

Background: CCM therapy for New York Heart Association (NYHA) functional class III and IV heart failure (HF) patients consists of nonexcitatory electrical signals delivered to the heart during the absolute refractory period.

Methods: A total of 160 patients with NYHA functional class III or IV symptoms, QRS duration <130 ms, and ejection fraction $25% and #45% were randomized to continued medical therapy (control, n ¼ 86) or CCM (treatment, n ¼ 74, unblinded) for 24 weeks. Peak VO2 (primary endpoint), Minnesota Living With Heart Failure Questionnaire, NYHA functional class, and 6-min hall walk were measured at baseline and at 12 and 24 weeks. Bayesian repeated measures linear modeling was used for the primary endpoint analysis with 30% borrowing from the FIX-HF-5 subgroup. Safety was assessed by the percentage of patients free of device-related adverse events with a pre-specified lower bound of 70%.

Results: The difference in peak VO2 between groups was 0.84 (95% Bayesian credible interval: 0.123 to 1.552) ml O2/kg/min, satisfying the primary endpoint. Minnesota Living With Heart Failure questionnaire (p < 0.001), NYHA functional class (p < 0.001), and 6-min hall walk (p ¼ 0.02) were all better in the treatment versus control group. There were 7 device-related events, yielding a lower bound of 80% of patients free of events, satisfying the primary safety endpoint. The composite of cardiovascular death and HF hospitalizations was reduced from 10.8% to 2.9% (p ¼ 0.048).

Conclusions: CCM is safe, improves exercise tolerance and quality of life in the specified group of HF patients, and leads to fewer HF hospitalizations. (Evaluate Safety and Efficacy of the OPTIMIZER System in Subjects with Moderate-to-Severe Heart Failure; NCT01381172)

Download  |  Email

February 2018 – Roger et al: “Long-term results of combined cardiac contractility modulation and subcutaneous defibrillator therapy in patients with heart failure and reduced ejection fraction” Clinical Cardiology


Background: Cardiac contractility modulation (CCM) is an electrical-device therapy for patients with heart failure with reduced ejection fraction (HFrEF). Patients with left ventricular ejection fraction (LVEF) ≤35% also have indication for an implantable cardioverter-defibrillator (ICD), and in some cases subcutaneous ICD (S-ICD) is selected.

Hypothesis: CCM and S-ICD can be combined to work efficaciously and safely. Methods: We report on 20 patients with HFrEF and LVEF ≤35% who received CCM and SICD. To exclude device interference, patients received intraoperative crosstalk testing, S-ICD testing, and bicycle exercise testing while CCM was activated. Clinical and QOL measures before CCM activation and at last follow-up were analyzed. S-ICD performance was evaluated while both CCM and S-ICD were active.

Results: Mean follow-up was 34.3 months. NYHA class improved from 2.9  0.4 to 2.1  0.7 (P < 0.0001), Minnesota Living With Heart Failure Questionnaire score improved from 50.2  23.7 to 29.6  22.8 points (P < 0.0001), and LVEF improved from 24.4%  8.1% to 30.9%  9.6% (P = 0.002). Mean follow-up time with both devices active was 22 months. Three patients experienced a total of 6 episodes of sustained ventricular tachycardia, all successfully treated with first ICD shock. One case received an inappropriate shock unrelated to the concomitant CCM. One patient received an LVAD, so CCM and S-ICD were discontinued.

Conclusions: CCM and S-ICD can be successfully combined in patients with HFrEF. S-ICD and CCM remain efficacious when used together, with no interference affecting their function.

Download Email

January 2015 – Kuschyk et al. “Efficacy and survival in patients with CCM: long term single center experience in 81 patients”. International Journal of Cardiology


Aims: To analyze long-term efficacy and survival in patients with chronic heart failure treated with cardiac contractility modulation.

Methods: 81 patients implanted with a CCM device between 2004 and 2012 were included in this retrospective analysis. Changes in NYHA class, ejection fraction (EF), Minnesota Living with Heart Failure Questionnaire, NTproBNP and peak VO2 were analyzed during a mean follow up of 34.2 ± 28 months (6–123 months). Observed mortality rate was compared with that predicted by the MAGGIC Score.

Results: Patients were 61 ± 12 years old with EF 23 ± 7%. Heart failure was due to ischemic (n = 48, 59.3%) or idiopathic dilated (n = 33, 40.7%) cardiomyopathy. EF increased from 23.1 ± 7.9 to 29.4 ± 8.6% (p b 0.05), mean NT-proBNP decreased from 4395 ± 3818 to 2762 ± 3490 ng/l (p b 0.05) and mean peak VO2 increased from 13.9 ± 3.3 to 14.6 ± 3.5 ml/kg/min (p = 0.1). The overall clinical responder rate (at least 1 class improvement of NYHA within 6 months or last follow-up) was 74.1%. 21 (25.9%) patients died during follow up, 11 (52.4%) due to cardiac conditions and 10 (47.6%) due to non-cardiac conditions. Mortality rates at 1 and 3 years were 5.2% and 29.5% compared to mortality rates estimated from the MAGGIC risk score of 18.4% (p b 0.001) and 40% (p = ns), respectively. Log-Rank analysis of all events through 3 years of follow-up, however, was significantly less than predicted (p = 0.022).

Conclusions: CCM therapy improved quality of life, exercise capacity, NYHA class, EF and NT-proBNP levels during long-term follow up. Mortality rates appeared to be lower than estimated from the MAGGIC score.

Download  |  Email

May 2008 – Butter C. “Cardiac Contractility Modulation Electrical Signals Improve Myocardial Gene Expression in Patients with heart failure”. Journal of the American College of Cardiology


Objectives: The objective of this study was to test whether cardiac contractility modulation (CCM) electric signals induce reverse molecular remodeling in myocardium of patients with heart failure.

Background Heart failure is associated with up-regulation of myocardial fetal and stretch response genes and down regulation of Ca2 cycling genes. Treatment with CCM signals has been associated with improved symptoms and exercise tolerance in heart failure patients. We tested the impact of CCM signals on myocardial gene expression in 11 patients.

Methods: Endomyocardial biopsies were obtained at baseline and 3 and 6 months thereafter. The CCM signals were delivered in random order of ON for 3 months and OFF for 3 months. Messenger ribonucleic acid expression was analyzed in the core lab by investigators blinded to treatment sequence. Expression of A- and B-type natriuretic peptides and -myosin heavy chain (MHC), the sarcoplasmic reticulum genes SERCA-2a, phospholamban and ryanodine receptors, and the stretch response genes p38 mitogen activated protein kinase and p21 Ras were measured using reverse transcription-polymerase chain reaction and bands quantified in densitometric units.

Results: The 3-month therapy OFF phase was associated with increased expression of A- and B-type natriuretic peptides, p38 mitogen activated protein kinase, and p21 Ras and decreased expression of -MHC, SERCA-2a, phospholamban, and ryanodine receptors. In contrast, the 3-month ON therapy phase resulted in decreased expression of A- and B-type natriuretic peptides, p38 mitogen activated protein kinase and p21 Ras and increased expression of -MHC, SERCA-2a, phospholamban, and ryanodine receptors.

Conclusions: The CCM signal treatment reverses the cardiac maladaptive fetal gene program and normalizes expression of key sarcoplasmic reticulum Ca2 cycling and stretch response genes. These changes may contribute to the clinical effects of CCM.

Download Email

January 2008 – Borggrefe M.M. et al. “Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure”. European Heart Journal.


Aims: We performed a randomized, double blind, crossover study of cardiac contractility modulation (CCM) signals in heart failure patients.

Methods and Results: One hundred and sixty-four subjects with ejection fraction (EF) , 35% and NYHA Class II (24%) or III (76%) symptoms received a CCM pulse generator. Patients were randomly assigned to Group 1 (n ¼ 80, CCM treatment 3 months, sham treatment second 3 months) or Group 2 (n ¼ 84, sham treatment 3 months, CCM treatment second 3 months). The co-primary endpoints were changes in peak oxygen consumption (VO2,peak) and Minnesota Living with Heart Failure Questionnaire (MLWHFQ). Baseline EF (29.3+6.7% vs. 29.8+7.8%), VO2, peak (14.1+3.0 vs. 13.6+2.7 mL/kg/min), and MLWHFQ (38.9+27.4 vs. 36.5+27.1) were similar between the groups. VO2,peak increased similarly in both groups during the first 3 months (0.40+3.0 vs. 0.37+3.3 mL/kg/min, placebo effect). During the next 3 months, VO2,peak decreased in the group switched to sham (20.86+3.06 mL/kg/min) and increased in patients switched to active treatment (0.16+2.50 mL/kg/min). MLWHFQ trended better with treatment (212.06+15.33 vs. 29.70+16.71) during the first 3 months, increased during the second 3 months in the group switched to sham (þ4.70+16.57), and decreased further in patients switched to active treatment (20.70+15.13). A comparison of values at the end of active treatment periods vs. end of sham treatment periods indicates statistically significantly improved VO2,peak and MLWHFQ (P ¼ 0.03 for each parameter).

Conclusion: In patients with heart failure and left ventricular dysfunction, CCM signals appear safe; exercise tolerance and quality of life (MLWHFQ) were significantly better while patients were receiving active treatment with CCM for a 3-month period.

Download  |  Email


December 2019 – Campbell et al: "Optimizer Smart in the treatment of moderate-to-severe chronic heart failure" Future Cardiology

ABSTRACT Cardiac contractility modulation, also referred to as CCM™, by the Optimizer Smart device is an innovative intracardiac device-based therapy that has been recently US FDA-approved for the treatment of patients with chronic heart failure, left ventricular ejection fraction (LVEF) between 25 and 45%, QRS <130 ms who remain symptomatic despite optimal medical therapy. Clinical trials demonstrate that CCM therapy is safe and effective in reducing heart failure hospitalization and improving heart failure symptoms, quality of life and functional performance. This novel device-based therapeutic offers benefits to patients who do not otherwise qualify for cardiac resynchronization therapy. CCM expands the indication beyond the traditional LVEF cutoff of 35% to a newer group including patients who fall in midrange LVEF group, up to 45%.

Download Email

December 2018 – Borggrefe and Mann: Cardiac Contractility Modulation in 2018. Circulation
August, 2013 – Lyon A.R. et al. “Cardiac Contractility Modulation therapy in advanced systolic heart failure”. Nature Review Cardiology
January 2020 – Witte, et al: “Cost-effectiveness of a cardiac contractility modulation device in heart failure with normal QRS duration," ESC Heart Failure

Aims: The objective of this paper is to assess whether cardiac contractility modulation (via the Optimizer System) plus standard of care (SoC) is a cost-effective treatment for people with heart failure [New York Heart Association (NYHA) III, left ventricular ejection fraction of 25–45%, and narrow QRS] compared against SoC alone from the perspective of the English National Health Service.

Methods and Results: We developed a regression equation-based cost-effectiveness model, using individual patient data from three randomized control trials (FIX-HF-5 Phases 1 and 2, and FIX-HF-5C) to populate the majority of parameters. A series of regression equations predicted NYHA class over time, mortality, all-cause hospitalization rates, and health-related quality of life. We conducted the analysis in line with the National Institute for Health and Care Excellence reference case, modelling costs from an English National Health Service perspective, and considering outcomes in quality-adjusted life years (QALYs) over a patient lifetime perspective. Our base case analysis produced an incremental cost per additional QALY of GBP22 988 (€25 750) when comparing Optimizer + SoC to SoC alone. This result was not sensitive to parameter uncertainty but was sensitive to the time horizon over which costs and QALYs were captured and the duration over which a survival benefit with Optimizer + SoC can be assumed to apply.

Conclusions: Cardiac contractility modulation is likely to be cost-effective in people with heart failure with reduced ejection fraction, NYHA III, and narrow QRS, provided that the treatment benefit can be maintained beyond the duration of the existing clinical trial follow-up. This analysis supports the current recommendations of the European Society of Cardiology that this therapy may be considered for such patients.


Case Reports

A Multistep Approach to Deal With Advanced Heart Failure: A Case Report on the Positive Effect of Cardiac Contractility Modulation Therapy on Pulmonary Pressure Measured by CardioMEMS

During the last years, the management of heart failure (HF) made substantial progress, focusing on device-based therapies to meet the demands of this complex syndrome. In this case report, we present a multistep approach to deal with HF. Specifically, we report the first patient subjected to the implantation of both Optimizer Smart® (Impulse Dynamics Inc., Marlton, NJ, USA) and CardioMEMS devices. A 72-year-old male patient with HF and reduced ejection fraction (HFrEF) was admitted to our cardiology department in January 2021, following a progressive shortening of the time between hospitalizations for levosimendan infusions. Specifically, the patient was monitored daily by CardioMEMS, and a strategy of levosimendan infusions guided by the device had been adopted. He was also a carrier of MitraClips and cardiac resynchronization therapy defibrillator (CRT-D) and had optimized HF medical therapy. In January 2021, the patient implanted Optimizer Smart® device for cardiac contractility modulation (CCM) therapy because of poor response to therapy and elevated pulmonary artery pressure (PAP). CCM significantly reduced PAP values following discharge (systolic PAP 33.67 ± 2.92 vs. 40.6 ± 3.37 mmHg, diastolic PAP 14.5 ± 2.01 vs. 22.5 ± 2.53 mmHg, mean PAP 22.87 ± 2.20 vs. 30.9 ± 2.99 mmHg, HR 60.93 ± 1.53 vs. 80.83 ± 3.66 bpm; p < 0.0001), with persisting effect at 9 months. The usefulness of CCM is objectively demonstrated for the first time by continuous invasive monitoring of PAP by CardioMEMS, which can suggest the correct timing for CCM implantation.

Manganelli G. et al. Use of Cardiac Contractility Modulation in an Older Patient with dilated nonischemic cardiomyopathy MDPI Clinics and Practice 2021

Cardiac contractility modulation (CCM) is a novel device-based therapy used in patients with HFrEF. CCM therapy is associated with an improvement in exercise tolerance, increased quality of life, reduced HF hospitalizations, and reverse remodelling of the left ventricle in patients with HFrEF. In this case, we report the clinical benefit of CCM in an older patient with advanced HFrEF due to ischemic dilated cardiomyopathy with frequent heart failure-related hospitalizations and poor quality of life despite optimal medical therapy.

Masarone D. et al. Advanced heart failure: state of the art and future directions

Advanced heart failure is a clinical challenge that requires a pathophysiological-based approach. As the field has been the subject
of multiple reviews, the objective of this paper is not to duplicate these publications but rather to offer practical tips for the clinical cardiologist to enable the optimal management of patients with advanced heart failure. Advanced heart failure is defined as a clinical syndrome characterized by severe and persistent symptoms, most commonly with severe ventricular dysfunction, despite optimized medical therapy. This review covers the management of the advanced heart failure patient from pharmacologic therapy with disease modifying drugs, to the use of electrical therapy devices, percutaneous valve repair and finally to the role of left ventricular assist devices and heart transplantation. The review also explores future directions in the management of advanced heart failure, including translational perspectives for the treatment of this syndrome.


Reach Out to an Impulse Dynamics Representative

To learn more about the Optimizer® Smart system or how you can give your patients a renewed sense of hope with the breakthrough treatment approach, reach out to a representative:

© 2023 Impulse Dynamics             Terms of Use | Data Protection | Imprint